Analisis Perbandingan Block Cipher Simon-Speck, Simeck, Skinny pada Komunikasi Berbasis LoRa

##plugins.themes.academic_pro.article.main##

Winda Ezranata Putri
Favian Dewanta
Farah Afianti

Abstract

Inventions solving problems through the incorporation of technology and social impacts to facilitate human life can be defined as the Internet of Things (IoT). Security and privacy are challenges in various Internet of Things applications given the rapid growth of IoT devices. Meanwhile, IoT devices still do not have sufficient communication security. Communication systems on IoT devices require cryptographic to maintain the security of their communications. The appropriate algorithm to be implemented on IoT devices should be the smallest and fastest lightweight cryptographic algorithm or commonly called Lightweight Cryptography because IoT devices have limited memory and computing power. In this study, the proposed algorithm to be implemented in Long Range or LoRa-based IoT devices is the Simon-Speck, Simeck, and Skinny encryption algorithm. This study discusses the implementation of the Simon-Speck, Simeck, and Skinny algorithms on Long Range-based IoT devices. The parameters compared are the computation time of the encryption and decryption process and the avalanche effect value. In the encryption and decryption process, the Speck algorithm has the fastest computation time. Meanwhile, the highest avalanche effect value is obtained by the Skinny algorithm, which is 50.34%.

##plugins.themes.academic_pro.article.details##

How to Cite
Putri, W. E., Favian Dewanta, & Farah Afianti. (2022). Analisis Perbandingan Block Cipher Simon-Speck, Simeck, Skinny pada Komunikasi Berbasis LoRa. MULTINETICS , 8(2), 97–104. https://doi.org/10.32722/multinetics.v8i2.4821

References

  1. G. Lampropoulos, K. Siakas, and T. Anastasiadis, “Internet of Things in the Context of Industry 4.0: An Overview,” Int. J. Entrep. Knowl., vol. 7, no. 1, pp. 4–19, 2019, doi: 10.2478/ijek-2019-0001.
  2. Yudho Yudhanto and Abdul Azis, Pengantar Teknologi Internet of Things (IoT), 1st ed. Surakarta: UNS Press, 2019.
  3. M. Dachyar, T. Y. M. Zagloel, and L. R. Saragih, “Knowledge growth and development: internet of things (IoT) research, 2006–2018,” Heliyon, vol. 5, no. 8, p. e02264, 2019, doi: 10.1016/j.heliyon.2019.e02264.
  4. B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology,” Internet of Things (Netherlands), vol. 11, p. 100227, 2020, doi: 10.1016/j.iot.2020.100227.
  5. Sathyan Munirathinam, “Chapter Six - Industry 4.0: Industrial Internet of Things (IIOT),” in The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, vol. 117, Pethuru Raj and P. Evangeline, Eds. Elsevier, 2020, pp. 129–164.
  6. A. Fotovvat, G. M. E. Rahman, S. S. Vedaei, and K. A. Wahid, “Comparative Performance Analysis of Lightweight Cryptography Algorithms for IoT Sensor Nodes,” IEEE Internet Things J., vol. 8, no. 10, pp. 8279–8290, 2021, doi: 10.1109/JIOT.2020.3044526.
  7. D. Sehrawat and N. S. Gill, “Lightweight block ciphers for IoT based applications: a review,” Int. J. Appl. Eng. Res., vol. 13, no. 5, pp. 2258–2270, 2018.
  8. S. Singh Dhanda, B. Singh, P. Jindal, and S. S. Dhanda, “Lightweight Cryptography: A Solution to Secure IoT,” vol. 112, pp. 1947–1980, 2020, doi: 10.1007/s11277-020-07134-3.
  9. S. M. S. Hussain, S. M. Farooq, and T. S. Ustun, “A Method for Achieving Confidentiality and Integrity in IEC 61850 GOOSE Messages; A Method for Achieving Confidentiality and Integrity in IEC 61850 GOOSE Messages,” IEEE Trans. Power Deliv., vol. 35, no. 5, 2020, doi: 10.1109/TPWRD.2020.2990760.
  10. S. Iyer, G. V. Bansod, V. Praveen Naidu, and S. Garg, “Implementation and Evaluation of Lightweight Ciphers in MQTT Environment,” 3rd Int. Conf. Electr. Electron. Commun. Comput. Technol. Optim. Tech. ICEECCOT 2018, pp. 276–281, Dec. 2018, doi: 10.1109/ICEECCOT43722.2018.9001599.
  11. B. Y. Yustiarini, F. Dewanta, and H. H. Nuha, “A Comparative Method for Securing Internet of Things (IoT) Devices: AES vs Simon-Speck Encryptions,” 2022 1st Int. Conf. Inf. Syst. Inf. Technol., pp. 392–396, Jul. 2022, doi: 10.1109/ICISIT54091.2022.9872666.
  12. T. Park, H. Seo, G. Lee, and H. Kim, “Efficient implementation of simeck family block cipher on 16-bit MSP430,” Int. Conf. Ubiquitous Futur. Networks, ICUFN, pp. 983–988, Jul. 2017, doi: 10.1109/ICUFN.2017.7993946.
  13. T. Ashur and A. Luykx, “An Account of the ISO/IEC Standardization of the Simon and Speck Block Cipher Families,” Secur. Ubiquitous Comput. Syst., pp. 63–78, 2021, doi: 10.1007/978-3-030-10591-4_4.
  14. J. Ge, Y. Xu, R. Liu, E. Si, N. Shang, and A. Wang, “Power attack and protected implementation on lightweight block cipher SKINNY,” Proc. - 13th Asia Jt. Conf. Inf. Secur. AsiaJCIS 2018, pp. 69–74, Aug. 2018, doi: 10.1109/ASIAJCIS.2018.00020.
  15. L. Sliman, T. Omrani, Z. Tari, A. E. Samhat, and R. Rhouma, “Towards an ultra lightweight block ciphers for Internet of Things,” J. Inf. Secur. Appl., vol. 61, p. 102897, Sep. 2021, doi: 10.1016/J.JISA.2021.102897.