PEMANFAATAN REFLEKTOR UNTUK PENINGKATAN DAYA LUARAN PANEL SURYA

##plugins.themes.academic_pro.article.main##

Isdawimah
Nuha Nadhiroh
Muchlishah
Dezetty Monika
Arum Kusuma Wardhany
Ajeng Bening Kusumaningtyas

Abstract

The Government of Indonesia has committed to support the development of solar power plant, while the efficiency of solar panels still around 5-16%. There are several methods to increase the output power of solar panel, but mostly consume a big portion of energy from solar power plant. The objective is to identify an off-grid solar power plant optimization method with smaller power consumption.  The proposed optimization method is to add a reflector that can be positioned to direct sunlight so that it always hits the solar panel, so that the solar panel is able to produce electrical power optimally. This method can save the use of electrical power, because the weight of the reflector is much lighter than solar panels. The position of the reflector can be adjusted automatically based on feedback from the monitoring system. Off Grid solar system consisting of solar panels, batteries, solar charge controller (SCC), inverters, safety against overloads, short circuits and lightning strikes and mounted reflectors that can be adjusted in position, so that a lot of sunlight hits the solar panels so that the solar panel output power increase. In choosing the type of reflector, several things need to be considered, namely weight, refractive index, size, shading effect and the reflector's resistance to wind, impact and shock. Data retrieval is carried out automatically with a monitoring system to measure and store data when testing solar power system without reflectors and with reflectors in various positions. Data retrieval is based on IEC Standard 61724, while data processing is based on IEA-PVPS T2-01, 2000. Installing reflectors on solar panels is proven to increase the output power of solar panels, where aluminum reflectors and flat mirrors produce the greatest output power at an angle of 83°. Flat mirror reflectors produce a greater increase in solar panel output power compared to flat aluminum reflectors

##plugins.themes.academic_pro.article.details##

Author Biography

Nuha Nadhiroh, Program Studi Teknik Otomasi Listrik Industri, Politeknik Negeri Jakarta

Teknik Elektro
How to Cite
Isdawimah, Nadhiroh, N., Muchlishah, Monika, D., Wardhany, A. K., & Kusumaningtyas, A. B. (2022). PEMANFAATAN REFLEKTOR UNTUK PENINGKATAN DAYA LUARAN PANEL SURYA. Jurnal Poli-Teknologi, 21(3), 97–106. https://doi.org/10.32722/pt.v21i3.4723

References

  1. S. M. Alfaridzi, A. Nugroho, and E. W. Sinuraya, “Perencanaan Pembangkit Listrik Tenaga Surya Dengan Menggunakan Software ETAP V.12.6. di Departemen Teknik Industri Universitas Diponegoro,” Transient, vol. 9, no. 2, pp. 143–147, 2020.
  2. Kementerian Energi dan Sumber Daya Mineral, Permen ESDM Nomor 50 Tahun 2017 tentang Pemanfaatan Sumber Energi Terbarukan Untuk Penyediaan Tenaga Listrik. Indonesia, 2017.
  3. Kementerian Energi dan Sumber Daya Mineral, Permen ESDM Nomor 48 Tahun 2018 tentang Penggunaan Sistem Pembangkit Listrik Tenaga Surya Atap Oleh Konsumen PT Perusahaan Listrik Negara (Persero). Indonesia, 2018.
  4. PT PLN (Persero), Rencana Usaha Peyendiaan Tenaga Listrik (RUPTL) 2019-2028. Indonesia, 2019.
  5. H. Hasan, “Perancangan Pembangkit Listrik Tenaga Surya di Pulau Saugi,” in Jurnal Riset dan Teknologi Kelautan (JRTK), 2012, vol. 10, no. 2, pp. 169–180.
  6. R. Alik and A. Jusoh, “An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module,” Sol. Energy, vol. 163, pp. 570–580, 2018.
  7. M. Al-Dhaifallah, A. M. Nassef, H. Rezk, and K. S. Nisar, “Optimal parameter design of fractional order control based INC-MPPT for PV system,” Sol. Energy, vol. 159, pp. 650–664, 2018.
  8. M. Lasheen and M. Abdel-Salam, “Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach,” Energy Convers. Manag., vol. 171, pp. 1002–1019, 2018.
  9. X. Meng, M. Leng, H. Zhang, and T. Xu, “MPPT control strategy based on CVT and variable step hysteresis comparison method,” in 2017 29th Chinese Control And Decision Conference (CCDC), 2017, pp. 3252–3257.
  10. L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1548–1556, 2009.
  11. Isdawimah, U. B. Sudibyo, and E. A. Setiawan, “Analisis Kinerja Pembangkit Listrik Energi Terbarukan pada Jaringan Listrik Mikro Arus Searah,” Poli-Teknologi, vol. 9, no. 2, 2010.
  12. Isdawimah, “Feasibility of Photovoltaic Power System for Remote Villages in West Java,” in The 12th International Conference on Quality in Research (QiR), 2011.
  13. R. Setiabudy and R. Gunawan, “The Effect of High Switching Frequency on Inverter Against Measurements of kWh-Meter,” IPTEK J. Proceeding Ser., vol. 1, pp. 2354–6026, 2014.
  14. Isdawimah, R. Setiabudy, and R. Gunawan, “Improving kWh-meter performance at pv on grid system by multiplying the number of sampling signal,” J. Theor. Appl. Inf. Technol., vol. 71, no. 2, pp. 302–309, 2015.
  15. Ismujianto and Isdawimah, “Desain akuisisi data kualitas daya listrik,” POLITEKNOLOGI, vol. 15, no. 2, pp. 147–153, 2016.
  16. I. Isdawimah, “Error Optimization in Electrical Power Quality Monitoring Data,” Log. J. Ranc. Bangun dan Teknol. Vol 19 No 1 MarchDO - 10.31940/logic.v19i1.1214 , Mar. 2019.
  17. Isdawimah, “Pembangkit Listrik Tenaga Surya Portabel,” IDD000052704, 2018.
  18. Y. S. Lim, C. K. Lo, S. Y. Kee, H. T. Ewe, and A. R. Faidz, “Design and evaluation of passive concentrator and reflector systems for bifacial solar panel on a highly cloudy region – A case study in Malaysia,” Renew. Energy, vol. 63, pp. 415–425, 2014.
  19. Y. K. Chauhan, M. Ieee, and K. Sultanpur, “Performance Improvement of Solar Photo-Voltaic Panel with Various Types of Reflectors,” 2018 Int. Conf. Power Energy, Environ. Intell. Control, pp. 232–238, 2018.
  20. H. Nussbaumer et al., “Application of Shaped Reflectors to Increase the Energy Harvest of Bifacial PV Systems - Analyzed with a Miniaturized Test Array,” in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1077–1080.
  21. A. Ingenito et al., “Optimized Metal-Free Back Reflectors for High-Efficiency Open Rear c-Si Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 34–40, 2016.
  22. J. S. Choi, J. H. Kim, and C. T. Rim, “Incidence solar power analysis of PV panels with curved reflectors,” in 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017, pp. 1–6.
  23. K. R. Narahari, S. Mishra, V. Hegde, K. A. Kumar, C. Prabhu, and N. Chaulagain, “Enhanced radiation trapping technique using low-cost aluminium flat plate reflector a performance analysis on solar PV modules,” in 2017 2nd International Conference for Convergence in Technology (I2CT), 2017, pp. 416–420.
  24. D. T. P. Wijesuriya, K. D. S. H. Wickramathilaka, L. S. Wijesinghe, D. M. Vithana, and H. Y. R. Perera, “Placing reflectors for reducing payback period of solar PV for smart buildings,” in 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), 2017, pp. 480–485.
  25. IEEE, “IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,” IEEE Std 929-2000, pp. i-, 2000.
  26. X. Zou and L. Bian, “Development of a data acquisition system for grid-connected photovoltaic systems,” in 2011 International Conference on Electrical and Control Engineering, 2011, pp. 5227–5230.