Design and Build Smart Farming for Monitoring the Growth of Water Spinach With the Support of Sonic Bloom Technology

##plugins.themes.academic_pro.article.main##

Putri Ayu Rezeki

Abstract

Water spinach is one of the popular vegetables in Indonesia because it has fast-growing properties and is relatively fast in harvesting. Currently, some farmers are cultivating water spinach hydroponically because the technique is more efficient. In the growth of kale, farmers usually always look directly at the garden. So to see from a distance, a water spinach growth monitoring test will be carried out using the Internet of Things (IoT) combined with sonic bloom technology taken from dangdut, jazz, and murottal music with a frequency of 4000 Hz. Sonic Bloom is a technology development that utilizes sound waves to accelerate the opening of the leaf mouth (stomata). The parameters for testing the productivity of water spinach were plant height, room temperature, and water temperature. Network performance testing parameters are delay, throughput, and packet loss. The purpose of this study was to compare the results of three types of music that affect water spinach and water spinach without sonic bloom technology and to test the results of network performance. The application of sonic bloom technology was successfully implemented on water spinach with the most influential result being jazz music with a height of 25.47 cm. Very good network performance in this study is testing with delivery every 5 minutes in 30 minutes of observation with a distance of 2 meters with a delay value of 28.34 ms, throughput 71010.70 bps and packet loss of 0%.

##plugins.themes.academic_pro.article.details##

How to Cite
Rezeki, P. A. (2022). Design and Build Smart Farming for Monitoring the Growth of Water Spinach With the Support of Sonic Bloom Technology. MULTINETICS, 8(1), 50–59. Retrieved from https://jurnal.pnj.ac.id/index.php/multinetics/article/view/4683

References

  1. A. Sazama, “Daya Terima Panelis Terhadap Mutu Organoleptik Selai Kangkung (Ipomoea reptans Poir),” Comput. Ind. Eng., vol. 2, no. 1, p. 6, 2018.
  2. A. N. M. Haikal Fakhri Fazri Siregar, “Sosialisasi Budidaya Sistem Tanam Hidroponik Dan Veltikultur,” J. Pengabdi. Masy., vol. 3, no. 1, pp. 113–117, 2021.
  3. I. S. Aminah, R. Rosmiah, H. Hawalid, L. Yuningsih, and H. Helmizuryani, “Penyuluhan Budidaya Tanaman Sayur Kangkung (Ipomoea Reptans) Melalui Sistem Hidroponik di Kelurahan Alang-Alang Lebar Kota Palembang,” Int. J. Community Engagem., pp. 46–50, 2020.
  4. I. Pujiwati and S. Sugiarto, “Pengaruh Intensitas Bunyi Terhadap Pembukaan Stomata , Pertumbuhan dan Hasil Kedelai ( Glycine Max ( L .) Merril ) Melalui Aplikasi Sonic Bloom,” Folium, vol. 1, no. 1, pp. 60–70, 2017.
  5. T. A. Yuwono, S. Sulistiadi, and D. Atmiasih, “Pengaruh Teknologi Ramah Lingkungan Sonic Bloom Menggunakan Musik Hard Rock dan Asmaul Husna Terhadap Pertumbuhan Kangkung (Ipomoea Aquatic),” Mekanika, vol. 2, no. 2, pp. 54–58, 2021.
  6. R. Rahman et al., “Peningkatan Hasil Panen Tomat di Desa Sambirejo Dengan Penerapan Teknologi ‘Sonic Bloom,’” Ilm. Pengemb. dan Penerapan IPTEKS, vol. 18, no. 2, pp. 248–258, 2020.
  7. J. Prasetyo and I. B. Lazuardi, “Pemaparan Teknologi Sonic Bloom Dengan Pemanfaatan Jenis Musik Terhadap Pertumbuhan Vegetatif Tanaman Selada Krop ( Lactuca Sativa L ),” J. Keteknikan Trop. dan Biosist., vol. 5, no. 2, pp. 189–199, 2017.
  8. R. Eka Putri, F. Arlius, E. Wulandari, and K. Fahmy, “Pemanfaatan Teknologi Sonic Bloom Untuk Meningkatkan Produktivitas Tanaman Sawi,” Teknol. Pertan. Andalas, vol. 25, no. 2, pp. 192–204, 2021.
  9. A. A. Ainun, W. Murti, and S. Maya, “Pengaruh Penggunaan Musik Rock Terhadap Pertumbuhan Cabai Merah Keriting (Capsicum Annum L.),” Binomial, vol. 4, no. 2, pp. 80–94, 2021.
  10. E. D. Meutia, “Interet of Things – Keamanan dan Privasi,” Semin. Nas. dan Expo Tek. Elektro, pp. 85–89, 2015.
  11. C. Hasiholan, R. Primananda, and K. Amron, “Implementasi Konsep Internet of Things pada Sistem Monitoring Banjir Menggunakan Protokol MQTT,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6128–6135, 2018.
  12. Iswanto and Gandi, “Perancangan Dan Implementasi Sistem Kendali Lampu Ruangan Berbasis IoT (Internet of Things) Android (Studi Kasus Universitas Nurtanio),” Teknol. Inf. dan Komun., vol. 9, no. 1, pp. 38–46, 2018.
  13. R. A. S. Putra Stevano Frima Yudha, “Implementasi Sensor Ultrasonik HC-SR04 Sebagai Sensor Parkir Mobil Berbasis Arduino,” Einstein, pp. 19–26, 2017.
  14. K. S. Budi and Y. Pramudya, “Pengembangan Sistem Akuisisi Data Kelembaban Dan Suhu Dengan Menggunakan Sensor DHT11 dan Arduino Berbasis IoT,” Semin. Nas. Fis., vol. 6, pp. 47–54, 2017.
  15. T. A. Siswanto and M. A. Rony, “Aplikasi Monitoring Suhu Air Untuk Budidaya Ikan Koi Dengan Menggunakan Mikrokontroller Arduino Nano Sensor Suhu DS18B20 Waterproof Dan Peltier Tec1-12706 Pada Dunia Koi,” Skanika, vol. 1, no. 1, pp. 40–46, 2018.
  16. R. R. Indra Warman, “Analisis Perbandingan Kinerja Query Database Management System (DBMS) Antara MySQL 5.7.16 dan MariaDb 10.1,” Teknoif, vol. 6, no. 1, pp. 32–41, 2018.
  17. I. P. A. E. Pratama and P. A. Dharmesta, “Implementasi Wireshark Dalam Melakukan Pemantauan Protocol Jaringan ( Studi Kasus : Intranet Jurusan Teknologi Informasi Universitas Udayana ),” Mantik Penusa, vol. 3, no. 1, pp. 94–99, 2019.