Implementasi Ethereum Blockchain dan Smart Contract pada Jaringan Smart Energy Meter


Anggun Mugi Mabruroh
Favian Dewanta
Aulia Arif Wardana


 In this study, we propose the creation of an Internet of Things device, namely a smart energy meter by implementing a blockchain system as a database. Internet of Things has a centralized storage system on the database server, if the server is down then the database cannot be used and data may be lost. There is a storage system that has a decentralized and distributed network, namely the blockchain. The private blockchain system is built using the Ethereum framework. Sensor data will be read by the Raspberry Pi 4B and sent to node 1 via MQTT. Node 1 will save the data to the block. Two nodes Ethereum account will validate the block. If accepted then the block will be stored on the blockchain and create a new block chain. In the storage process, there is a smart contract between Ethereum accounts that is created using Solidity and accessed using the web3 API. Successfully saved data will be displayed to the user's web. Based on the results of measuring the performance of the MQTT protocol and blockchain system when compared to traditional databases, blockchain is less fast in the storage process because there is a transaction process and data verification. However, if it is applied to smart energy meter data, it doesn't matter because the time required for the storage process is a maximum of 1 minute. The number of nodes and the size of the data or block does not affect the performance of the proof of authority consensus algorithm


How to Cite
Mabruroh, A. M., Favian Dewanta, & Aulia Arif Wardana. (2021). Implementasi Ethereum Blockchain dan Smart Contract pada Jaringan Smart Energy Meter. MULTINETICS, 7(1), 82–91. Retrieved from


  1. M. Moniruzzaman, S. Khezr, A. Yassine, and R. Benlamri, “Blockchain for smart homes: Review of current trends and research challenges,” Comput. Electr. Eng., vol. 83, p. 106585, 2020, doi: 10.1016/j.compeleceng.2020.106585.
  2. J. E. Siegel, S. Kumar, and S. E. Sarma, “The future internet of things: Secure, efficient, and model-based,” IEEE Internet Things J., vol. 5, no. 4, pp. 2386–2398, 2018, doi: 10.1109/JIOT.2017.2755620.
  3. N. A. Prasetyo, A. G. Prabawati, and Suyoto, “Smart home: Power electric monitoring and control in Indonesia,” Int. J. Interact. Mob. Technol., vol. 13, no. 3, pp. 143–151, 2019, doi: 10.3991/ijim.v13i03.10070.
  4. M. B. Mollah et al., “Blockchain for Future Smart Grid: A Comprehensive Survey,” IEEE Internet Things J., vol. X, no. vi, pp. 1–1, 2020, doi: 10.1109/JIOT.2020.2993601.
  5. F. Dewanta and M. Mambo, “BPT Scheme : Establishing Trusted Vehicular Fog Computing Service for Rural Area Based on Blockchain Approach,” vol. 70, no. 2, pp. 1752–1769, 2021, doi: 10.1109/TVT.2021.3051258.
  6. A. I. I. MuhammadRakha Laayu, Rendy Munadi, “Analisis Algoritma Advanced Encryption Standard (AES) Untuk Sistem Pemantauan Konsumsi Daya Listrik,” e-Proceeding Eng., vol. 7, no. 3, pp. 8827–8833, 2020, [Online]. Available:
  7. Y. Ren et al., “Multiple cloud storage mechanism based on blockchain in smart homes,” Futur. Gener. Comput. Syst., vol. 115, pp. 304–313, 2021, doi: 10.1016/j.future.2020.09.019.
  8. G. S. Ramachandran et al., “Trinity: A Byzantine Fault-Tolerant Distributed Publish-Subscribe System with Immutable Blockchain-based Persistence,” in 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), May 2019, pp. 227–235, doi: 10.1109/BLOC.2019.8751388.
  9. R. A. Atmoko, R. Riantini, and M. K. Hasin, “IoT real time data acquisition using MQTT protocol,” J. Phys. Conf. Ser., vol. 853, no. 1, 2017, doi: 10.1088/1742-6596/853/1/012003.
  10. A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT security and privacy: The case study of a smart home,” 2017 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2017, pp. 618–623, 2017, doi: 10.1109/PERCOMW.2017.7917634.
  11. L. Arief and T. A. Sundara, “Studi atas Pemanfaatan Blockchain bagi Internet of Things (IoT),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, p. 70, 2017, doi: 10.29207/resti.v1i1.26.
  12. D. A. Badawi, “Sistem Verifikasi Dokumen Hasil Investigasi Digital Berbasis Teknologi Blockchain.” 2019.
  13. S. Ferretti and G. D’Angelo, “On the Ethereum blockchain structure: A complex networks theory perspective,” Concurr. Comput. , vol. 32, no. 12, 2020, doi: 10.1002/cpe.5493.
  14. P. Wackerow, “Intro to Ethereum,” 2021.
  15. P. Sajana, “On Blockchain Applications : Hyperledger Fabric And Ethereum,” vol. 118, no. 18, pp. 2965–2970, 2018.
  16. S. Al-Saqqa and S. Almajali, “Blockchain technology consensus algorithms and applications: A survey,” Int. J. Interact. Mob. Technol., vol. 14, no. 15, pp. 142–156, 2020, doi: 10.3991/IJIM.V14I15.15893.
  17. J. C. Piper Merriam, “Introduction,” 2018.
  18. T. go-ethereum Authors, “Go Ethereum,” 2021.
  19. P. Wackerow, “Nodes and clients,” 2021.
  20. M. J. M. Chowdhury, A. Colman, M. A. Kabir, J. Han, and P. Sarda, “Blockchain Versus Database: A Critical Analysis,” Proc. - 17th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust. 2018, no. August, pp. 1348–1353, 2018, doi: 10.1109/TrustCom/BigDataSE.2018.00186.
  21. Y. Wu, P. Song, and F. Wang, “Hybrid Consensus Algorithm Optimization: A Mathematical Method Based on POS and PBFT and Its Application in Blockchain,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/7270624.
  22. B. Cao et al., “Performance analysis and comparison of PoW, PoS and DAG based blockchains,” Digit. Commun. Networks, vol. 6, no. 4, pp. 480–485, 2020, doi: 10.1016/j.dcan.2019.12.001.