Analisa Perilaku Dosen dalam Memanfaatkan E-Learning di Lingkungan PNJ Menggunakan TAM2 (Technology Acceptance Model)

##plugins.themes.academic_pro.article.main##

Anita Hidayati
Shinta Oktaviana
Iklima Ermis Ismail

Abstract

E-learning merupakan salah satu penunjang keberhasilan proses pembelajaran dalam hal peningkatan mutu dan kualitas. Penelitian ini bertujuan untuk menganalisa perilaku dosen dalam memanfaatkan E-learning dengan TAM2 (Technology Acceptance Model). Metode TAM2 digunakan untuk mengukur tingkat penerimaan teknologi pada sebuah organisasi. Instrumen penelitian berupa kuisioner online dalam bentuk google form yang disebarkan kepada dosen semua jurusan di PNJ. Kuesioner yang bisa diolah sebanyak 22 data. Model diolah menggunakan SEM (Structural Equation Model), dan hasil kuesioner diolah menggunakan tools SmartPLS. Hasil pengolahan data menunjukkan bahwa dosen di PNJ belum dapat menerima kehadiran e-learning sebagai media pembelajaran. Beberapa penyebab kondisi ini adalah belum terbangunnya budaya organisasi dalam menggunakan e-learning sebagai sarana untuk membantu proses belajar mengajar;  belum terintegrasinya e-learning dengan sistem informasi akademik dan data akademik; user interface e-learning yang masih kurang sesuai dengan kebutuhan dan kondisi dosen PNJ.

##plugins.themes.academic_pro.article.details##

How to Cite
Hidayati, A., Oktaviana, S., & Ismail, I. E. (2018). Analisa Perilaku Dosen dalam Memanfaatkan E-Learning di Lingkungan PNJ Menggunakan TAM2 (Technology Acceptance Model). MULTINETICS , 3(2), 1–6. https://doi.org/10.32722/multinetics.v3i2.1118

References

  1. F. D. Davis Jr. 1986. A Technology Acceptance Model for Empirically Testing New End-user Information Systems: Theory and Results. USA : Massachusetts Institute of Technology,.
  2. K. A. Al-Busaidi and H. Al-Shihi. 2010.Instructors' Acceptance of Learning Management Systems: A Theoretical Framework. Communications of the IBIMA, vol. 2010, p. 2010,.
  3. Q. Ma and L. Liu. 2004.The Technology Acceptance Model: A Meta-Analysis Of Empirical Findings. Journal of Organizational and End User Computing (JOEUC), vol. 16, pp. 59-72.
  4. D. Kim and H. Chang. 2007. Key Functional Characteristics in Designing And Operating Health Information Websites for User Satisfaction: An Application of The Extended Technology Acceptance Model. International Journal of Medical Informatics, vol. 76, pp. 790-800.
  5. J.-W. Moon and Y.-G. Kim. 2001. Extending The TAM for a World-WideWeb Context. Information & Management, vol. 38, pp. 217-230.
  6. Ajzen, I. 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.
  7. Malhotra, Y., & Galletta, D. F. 1999. Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Proceedings of the 32nd Hawaii International Conference on System Sciences,.
  8. Grandon, E., Alshare, O., & Kwan, O. 2005. Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46–56.
  9. Ndubisi, N. O. 2006. Factors of online learning adoption: A comparative juxtaposition of the theory of planned behavior and the
  10. technology acceptance model. International Journal on E-learning, 5(4), 571–591.
  11. Thong, J. Y. L., Hong, W., Tam, K. 2002. Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences? International Journal of Human-Computer Studies, 57, 215–
  12. Lin, J. C., & Lu, H. 2000. Towards an understanding of the behavioral intention to use a Web Site. International Journal of Information Management, 20, 197–208.
  13. Mungania, P., & Reio, Jr. T. G. 2005. If e-learners get there, will they stay? The role of e-learning self-efficacy. Eric ed492287. Paper presented at the Academy of Human Resource Development International Conference (AHRD), Estes Park, CO, Feb 24–27, 2005, p. 1110–1117 (Symp. 48–2).
  14. Concannon, F., Flynn A., & Campbell. 2005. What campus-based students think about the quality and benefits of e-learning. British Journal of Educational Technology. 36(2), 501–512.
  15. Saadé, R. G. 2003. Web-based education information system for enhanced learning, EISL: Student assessment. Journal of Information Technology Education, 2, 267–277.
  16. Kilmurray, J. (2003). E-learning: It’s more than automation. The Technology Source archives. Retrieved April 20, 2007, from http://technologysource.org/article/elearning/.
  17. Romero, M., & Barbera, E. 2011. Quality of learners time and learning performance beyond quantitative time-on-task. The International Review of Research in Open and Distance Learning, 5, 125-137.
  18. Bayu,Henki.,Wati, T.,Matondang, N., 2016. Analisis Pengukuran Tingkat KEsiapan Implementasi E-learning (E-learning Readiness) Studi Kasus : UPN Veteran Jakarta. Seminar Nasional Teknologi Informasi dan Multimedia. 2.5-1 s.d. 2.5-6.
  19. Adwan, Amer. Adwan, Ahmad, Smedley, Jo. 2013. Exploring Students Acceptance of e-learning using Technology Acceptance Model in Jordanian Universities. International Journal of Education and Development using Information and Communication Technology (IJEDICT). Vol. 9, Issue 2. pp. 4-18.
  20. Davis, F., Bagozzir, R. & Warshaw, P. 1989. “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models”. Management Science, 35 (8), pp. 982-1003.
  21. D. A. Morss.1999. A Study of Student Perspectives on Web-based learning: WebCT in the classroom.A Journal on Internet Research, 9(5). pp393--408.
  22. Adewole-Odeshi, Egbe. 2014. "Attitude of Students Towards E-learning in South-West Nigerian Universities: An Application of Technology Acceptance Model. Library Philosophy and Practice (e-journal). 1035.
  23. S. Wong and T. Teo. 2009. Determinants of the Intention to use Technology: Comparison between Malaysian and Singaporean female student teachers proceedings of the 17th international Conference on computers in education. Held in Hong Kong Asia-Pacific Society. pp 784-791.
  24. Liu, C. C. 2005. The Attitudes od University Teachers to adopt Information Technology in
  25. Teaching, Information Technoloogy Journal, 4 (4), 445-450.
  26. Gautreau, C. 2011. Motivational Factors Affecting the Integration of a Learning
  27. Management System by Faculty, California State University Fullerton, The Journal
  28. of Educators Online, Volume 8, Number 1, January 2011.
  29. Park, S. Y. 2009. An Analysis of the Technology Acceptance Model in Understanding University Students' Behavioral Intention to Use e-Learning. Educational Technology & Society, 12 (3), 150–162.
  30. H.K.Yuen., & W.K.Ma. 2008. Exploring teacher acceptance of e-learning technology. Asia-Pacific Journal of Teacher Education. Vol. 36, 2008- Issue 3 : Technographies in Teacher Education : Research & Pedagogy in Technologically Mediated Learning Environments.
  31. Latan, H., dan Ghozali, I., 2012. Partial Least Square Konsep. Teknik dan Aplikasi Menggunakan Program SmartPLS 2.0 M3. Semarang: Badan Penerbit Universitas Diponegoro.
  32. Chin, W. W., .1998. The Partial Least Squares Approach for Structural Equation Modeling, in G.A. Marcoulides (Ed.), Modern Methods for Business Research (pp. 295-236). London: Lawrence Elbaum Association.
  33. Alharbi, S. & Drew, S. 2014. Using the Technology Acceptance Model in Understanding Academic’s Behavioural Intention to Use Learning Management Systems. International Journal of Advanced Computer Science and Applications, (IJACSA). Vol. 5. No. 1.