Efektivitas Penggunaan Microbubble Venturi Untuk Sistem Aerasi pada Tempat Pembibitan Nila

Authors

  • Diaz Azmiraldy Universitas Muhammadiyah Prof Dr Hamka
  • Pancatatya Hesti Gunawan

DOI:

https://doi.org/10.32722/jmt.v5i1.6345

Keywords:

Microbubble Venturi, Tilapia, Aeration

Abstract

Budidaya ikan nila telah menjadi sumber protein penting untuk konsumsi manusia. Namun, keberhasilan penangkaran ikan nila sangat bergantung pada sistem aerasi yang digunakan di kolam penangkaran. Tujuan dari penelitian ini adalah untuk mengevaluasi efektivitas penggunaan microbubble venturi untuk sistem aerasi di kolam penangkaran ikan nila. Eksperimen dilakukan di dua kolam dengan dimensi yang sama, satu kolam menggunakan sistem microbubble venturi dan kolam lainnya menggunakan sistem aerasi tradisional. Penelitian berlangsung selama enam bulan, selama itu parameter kualitas air, kinerja pertumbuhan ikan, dan tingkat kelangsungan hidup dipantau. Hasil penelitian menunjukkan bahwa sistem microbubble venturi secara signifikan meningkatkan parameter kualitas air di tambak, termasuk oksigen terlarut, pH, dan total amonia nitrogen. Selain itu, kinerja pertumbuhan dan tingkat kelangsungan hidup ikan secara signifikan lebih tinggi di kolam dengan sistem venturi microbubble dibandingkan dengan sistem aerasi tradisional. Hasil penelitian ini menunjukkan bahwa sistem microbubble venturi merupakan sistem aerasi yang efektif untuk kolam penangkaran ikan nila, karena meningkatkan kualitas air dan performa pertumbuhan ikan, serta dapat dipertimbangkan sebagai teknologi alternatif untuk budidaya ikan nila.

References

Barisam, M., Niavol, F. R., Kinj, M. A., Saidi, M. S., Ghanbarian, H., & Kashaninejad, N. (2022). Enrichment of cancer stem-like cells by controlling oxygen, glucose and fluid shear stress in a microfluidic spheroid culture device. Journal of Science: Advanced Materials and Devices, 7(2), 100439. https://doi.org/10.1016/j.jsamd.2022.100439

Burke, M., Grant, J., Filgueira, R., & Stone, T. (2021). Oceanographic processes control dissolved oxygen variability at a commercial Atlantic salmon farm: Application of a real-time sensor network. Aquaculture, 533(November), 736143. https://doi.org/10.1016/j.aquaculture.2020.736143

Farobie, O., Syaftika, N., Hartulistiyoso, E., Amrullah, A., Bayu, A., Moheimani, N. R., Matsumura, Y., & Karnjanakom, S. (2022). The Potential of Sustainable Biogas Production from Macroalgae in Indonesia. IOP Conference Series: Earth and Environmental Science, 1038(1). https://doi.org/10.1088/1755-1315/1038/1/012020

Finley, J. P. (2022). A fluid description based on the Bernoulli equation of the one-body stationary states of quantum mechanics with real valued wavefunctions. Journal of Physics Communications, 6(4). https://doi.org/10.1088/2399-6528/ac623d

Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A., & Hachem, E. (2021). A review on deep reinforcement learning for fluid mechanics. Computers and Fluids, 225, 104973. https://doi.org/10.1016/j.compfluid.2021.104973

Heriyati, E., Rustadi, R., Isnansetyo, A., Triyatmo, B., & Istiqomah, I. (2021). Microbubble aerator test and harvest target prediction based on oxygen consumption of red tilapia (Oreochromis sp.). AACL Bioflux, 14(5), 3006–3022.

Heriyati, E., Rustadi, R., Isnansetyo, A., Triyatmo, B., Istiqomah, I., Deendarlianto, D., & Budhijanto, W. (2022). Microbubble Aeration in A Recirculating Aquaculture System (RAS) Increased Dissolved Oxygen, Fish Culture Performance, and Stress Resistance of Red Tilapia (Oreochromis sp.). Trends in Sciences, 19(20). https://doi.org/10.48048/tis.2022.6251

Jiang, X., Dong, S., Liu, R., Huang, M., Dong, K., Ge, J., Gao, Q., & Zhou, Y. (2021). Effects of temperature, dissolved oxygen, and their interaction on the growth performance and condition of rainbow trout (Oncorhynchus mykiss). Journal of Thermal Biology, 98(September 2020), 102928. https://doi.org/10.1016/j.jtherbio.2021.102928

Kisi, O., Alizamir, M., & Gorgij, A. D. (2020). Dissolved oxygen prediction using a new ensemble method. Environmental Science and Pollution Research, 2017.

Roy, S. M., Jayraj, P., Machavaram, R., Pareek, C. M., & Mal, B. C. (2021). Diversified aeration facilities for effective aquaculture systems—a comprehensive review. Aquaculture International, 29(3), 1181–1217. https://doi.org/10.1007/s10499-021-00685-7

Soyama, H. (2021). Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number. Ultrasonics Sonochemistry, 71(October 2020), 105389. https://doi.org/10.1016/j.ultsonch.2020.105389

Suwartha, N., Syamzida, D., Priadi, C. R., Moersidik, S. S., & Ali, F. (2020). Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon, 6(4), e03748. https://doi.org/10.1016/j.heliyon.2020.e03748

Tsai, K. L., Chen, L. W., Yang, L. J., Shiu, H., & Chen, H. W. (2022). IoT based Smart Aquaculture System with Automatic Aerating and Water Quality Monitoring. Journal of Internet Technology, 23(1), 177–184. https://doi.org/10.53106/160792642022012301018

Wang, X., Shuai, Y., Zhang, H., Sun, J., Yang, Y., Huang, Z., Jiang, B., Liao, Z., Wang, J., & Yang, Y. (2020). Bubble breakup in a swirl-venturi microbubble generator. Chemical Engineering Journal, 403(February 2020), 126397. https://doi.org/10.1016/j.cej.2020.126397

Yustiati, A., Nariswari, S., Rostini, I., & Suryadi, I. B. B. (2020). Effect of Stocking Density on Survival Rate and Growth of Tilapia (Oreochromis niloticus Linnaeus, 1758) in Round Container with Water Current Combined with Venturi Aeration System. Asian Journal of Fisheries and Aquatic Research, February 2021, 52–61. https://doi.org/10.9734/ajfar/2020/v8i130132

Published

2024-04-30

How to Cite

Diaz Azmiraldy, & Gunawan, P. H. (2024). Efektivitas Penggunaan Microbubble Venturi Untuk Sistem Aerasi pada Tempat Pembibitan Nila. Jurnal Mekanik Terapan, 5(1), 43–48. https://doi.org/10.32722/jmt.v5i1.6345

Issue

Section

Articles