Soil Improvement of Petobo Silty Sand using Ferronickel Slag and Alkaline Activators

##plugins.themes.academic_pro.article.main##

Aswin Lim
Adrianus Renaldy
David Kristian

Abstract

This study aims to provide an alternative soil improvement that can be applied in the Petobo area, which experienced liquefaction on September 29, 2018. Ferronickel slag is utilized as a binding agent. Furthermore, large concentrations of alkaline solutions (potassium hydroxide and sodium hydroxide) are utilized as activators to activate kaolin and initiate the geopolymer production process. From the test results, it can be concluded that sodium hydroxide and potassium hydroxide solutions are effective to be applied as an alkaline solution. The maximum unconfined compressive strength of the sample is about 530 kPa with a concentration of 10% of ferronickel slag and 10M of alkaline activator. This value is twice larger than if we applied cement to the soil with the same amount of concentration. Hence, the effect of the admixture of ferronickel slag and alkaline activator is more dominant than the admixture of cement only. Furthermore, the Scanning Electron Microscope and X-Ray Fluorescence Spectrometer tests were also carried out to investigate the chemical bonds that occurred in the samples. It is revealed that the geopolymer matrix envelops soil particles resulting from the geopolymer reaction. The composition of SiO2 and Al2O3 in the treated Petobo silty sand decreased. It might be due to the geopolymer reaction that occurs in the sample so that the content of SiO2 and Al2O3 compounds is reduced. Because it uses an activator in the form of a KOH and NaOH solution, there is an increase in the levels of MgO compounds in the sample compared to untreated Petobo silty sand.

##plugins.themes.academic_pro.article.details##

How to Cite
Lim, A., Renaldy, A., & Kristian, D. (2023). Soil Improvement of Petobo Silty Sand using Ferronickel Slag and Alkaline Activators. Applied Research on Civil Engineering and Environment (ARCEE), 4(02), 73–83. https://doi.org/10.32722/arcee.v4i02.5714

References

  1. Alnahhal, M. F., Kim, T., & Hajimohammadi, A. (2021). Waste-derived activators for alkali-activated materials: A review. Cement and Concrete Composites, 118, 103980. https://doi.org/10.1016/j.cemconcomp.2021.103980
  2. ASTM D2166-00, (2000) Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, Annual Book of ASTM Standards, United States.
  3. ASTM D6913-04, (2017) Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, Annual Book of ASTM Standards, United States.
  4. Beddu, A., Setiawan, H., & Anugrah, M. R. (2022). Shear strength behaviour of liquefiable sand of petobo on treated by agarose under direct shear test. In IOP Conference Series: Materials Science and Engineering, 1212, 012035.
  5. Elkhebu, A. G., Zainorabidin, A., Bujang, H. B., Bakar, I. H., Abdeljouad, L. A., & khalef Dheyab, W. (2018). Alkaline activation of clayey soil using potassium hydroxide & fly ash. International Journal of integrated Engineering, 10(9), 99-104.
  6. Esmaeili, M., Astaraki, F., Yaghouti, H., & Rad, M. M. (2021). Laboratory Investigation on the Effect of Microsilica Additive on the Mechanical Behavior of Deep Soil Mixing Columns in Saline Dry Sand. Periodica Polytechnica Civil Engineering, 65(4), 1080-1091, https://doi.org/10.3311/PPci.18126
  7. Gallant, A. P., Montgomery, J., Mason, H. B., Hutabarat, D., Reed, A. N., Wartman, J., ... & Yasin, W. (2020). The sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake. Landslides, 17, 1925-1934.
  8. Hashim, A. N., Kamarudin, H., Begum, N., Al Bakri Abdullah, M. M., Razak, K. A., & Ekaputri, J. J. (2015). Effect of sodium hydroxide (NaOH) concentration on compressive strength of alkali-activated slag (AAS) mortars. Applied Mechanics and Materials, 754, 300-304. https://doi.org/10.4028/www.scientific.net/AMM.754-755.300
  9. Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1), 21, https://doi.org/10.1186/s40677-021-00194-y.
  10. Kuncoro, A., & Djayaprabha, H. S. (2021). The Effect of Sodium Hydroxide Molarity on The Compressive and Splitting Tensile Strength of Ferronickel Slag-Based Alkali-Activated Mortar. Media Komunikasi Teknik Sipil, 27(2), 151-160, https://doi.org/10.14710/mkts.v27i2.32706.
  11. Kusumawardani, R., Chang, M., Upomo, T. C., Huang, R. C., Fansuri, M. H., & Prayitno, G. A. (2021). Understanding of Petobo liquefaction flowslide by 2018.09.28 Palu-Donggala Indonesia earthquake based on site reconnaissance. Landslides, 18(9), 3163-3182, https://doi.org/10.1007/s10346-021-01700-x.
  12. Lim, A., Atmaja, P. C., & Rustiani, S. (2020). Bio-mediated soil improvement of loose sand with fungus. Journal of Rock Mechanics and Geotechnical Engineering, 12(1), 180-187, https://doi.org/10.1016/j.jrmge.2019.09.004.
  13. Lim, A., & Pianica, L. (2022). Efek Gradasi Tanah Pasir Pada Penggunaan Jamur Rhizopus Oligosporus untuk Perbaikan Tanah Pasir Lepas. Jurnal Aplikasi Teknik Sipil, 20(2), 157-162, http://dx.doi.org/10.12962/j2579-891X.v20i2.9769.
  14. Lim, A., Henzi, P., & Arvin, O. (2023). Comparison of pleurotus ostreatus and rhizopus oligosporus fungi for loose sand improvement. Journal of GeoEngineering, 18(1), 1-10, https://doi.org/10.6310/jog.202303_18(1).1.
  15. Okamura, M., Ishihara, M., & Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of geotechnical and geoenvironmental engineering, 132(2), 258-264, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(258).
  16. Putra, H., Yasuhara, H., Kinoshita, N., & Sudibyo, T. (2018). Improving shear strength parameters of sandy soil using enzyme-mediated calcite precipitation technique. Civil Engineering Dimension, 20(2), 91-95, https://doi.org/10.9744/ced.20.2.91-95.
  17. Sharma, A. K., & Sivapullaiah, P. V. (2012). Improvement of strength of expansive soil with waste granulated blast furnace slag. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, USA, 3920-3928, https://doi.org/10.1061/9780784412121.402
  18. Tokimatsu, K., Yoshimi, Y., & Ariizumi, K. (1990). Evaluation of liquefaction resistance of sand improved by deep vibratory compaction. Soils and Foundations, 30(3), 153-158, https://doi.org/10.3208/sandf1972.30.3_153.
  19. Tsuchida, H. (1970). Prediction and Countermeasure against Liquefaction in Sand Deposits. Seminar of the Port and Harbour Research Institute, Ministry of Transport, Yokosuka, Japan, 3.1-3.33.
  20. Upomo, T. C., Chang, M., Kusumawardani, R., Prayitno, G. A., Kuo, C. P., & Nugroho, U. (2023). Assessment of Petobo Flowslide Induced by Soil Liquefaction during 2018 Palu–Donggala Indonesian Earthquake. Sustainability, 15(6), 5371, https://doi.org/10.3390/su15065371.
  21. Yi, Y., Li, C., Liu, S., & Al-Tabbaa, A. (2014). Resistance of MgO–GGBS and CS–GGBS stabilised marine soft clays to sodium sulfate attack. Géotechnique, 64(8), 673-679, https://doi.org/10.1680/geot.14.T.012