Utilization of Plastic Waste as Soil Stabilization Material and Their Effect on Unconfined Compressive Strength Values

##plugins.themes.academic_pro.article.main##

Woelandari Fathonah
Rama Indera Kusuma
Enden Mina
Nadia Fadillah

Abstract

The objective of this research was to improve the bearing capacity of the soil located on Kampung Juhut Street, Pandeglang Regency, which initially had a bearing capacity of 3.01%, through stabilization methods. The plastic powder was selected as an additive due to its non-cohesive characteristics, which counterbalance the cohesive nature of clay soil. The study aimed to identify the soil type and classification, evaluate the impact of soil physical properties, and examine the changes in unconfined compressive strength after incorporating plastic powder in proportions of 2%, 4%, 6%, 8%, and 10%, with curing durations ranging from 0 to 28 days. The results indicated that the soil belonged to the category of organic clay soils with moderate to high plasticity according to the USCS soil classification system. The plasticity index decreased from 22.9% to 12.2% at the 8% variation and 11.9% at the 10% variation. The initial unconfined compressive strength of the soil was 1.1 kg/cm2. The greatest improvement was observed at the 8% variation, resulting in an unconfined compressive strength value of 3.4 kg/cm2, indicating a highly rigid consistency.

##plugins.themes.academic_pro.article.details##

How to Cite
Fathonah, W. ., Kusuma, R. I. ., Mina, E. ., & Fadillah, N. (2023). Utilization of Plastic Waste as Soil Stabilization Material and Their Effect on Unconfined Compressive Strength Values. Applied Research on Civil Engineering and Environment (ARCEE), 4(02), 54–63. https://doi.org/10.32722/arcee.v4i02.5282

References

  1. American Society for Testing And Materials. (2000). D4318 - 00: Standards, for Liquid Limit, Plastic Limit, and Plasticity Index of Soils This c of soils, ASTM D 4318-00. ASTM International, 04, 1–14.
  2. Badan Standardisasi Nasional. (2008a). SNI 1742:2008 tentang Cara Uji Kepadatan Ringan untuk Tanah. Jakarta: Badan Standarisasi Nasional.
  3. Badan Standardisasi Nasional. (2008b). SNI 1964:2008 tentang Cara uji berat jenis tanah. Jakarta: Badan Standarisasi Nasional.
  4. Badan Standardisasi Nasional. (2008c). SNI 1965:2008. tentang Cara uji penentuan kadar air untuk tanah dan batuan di laboratorium. Jakarta: Badan Standarisasi Nasional.
  5. Badan Standardisasi Nasional. (2008d). SNI 1966:2008. tentang Cara uji penentuan batas cair tanah. Jakarta: Badan Standarisasi Nasional.
  6. Badan Standardisasi Nasional. (2008e). SNI 1967:2008. tentang Cara Uji Penentuan Batas Cair Tanah. Jakarta: Badan Standarisasi Nasional.
  7. Badan Standardisasi Nasional. (2018). SNI 3423:2018. tentang Cara uji analisis ukuran butir tanah. Jakarta: Badan Standarisasi Nasional.
  8. Badan Standardisasi Nasional. (2012). SNI 3638:2012. tentang Metode Uji Kuat Tekan-Bebas Tanah Kohesif. Jakarta: Badan Standarisasi Nasional.
  9. Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering Behavior of a Sand Reinforced with Plastic Waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462–472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)
  10. Darwis, H. (2017). Dasar–Dasar Teknik Perbaikan Tanah. Yogyakarta: Pustaka AQ.
  11. Das, B. M. (1995). Mekanika Tanah Prinsip-prinsip Rekayasa Geoteknik. Jakarta: Erlangga.
  12. Direktorat Jenderal Bina Marga. (2018). Spesifikasi Umum 2018. Edaran Dirjen Bina Marga Nomor 02/SE/Db/2018, Revisi 2, 6.1-6.104.
  13. Hardiyatmo, H. C. (1992). Mekanika Tanah I. Jakarta: Gramedia Pustaka.
  14. Jin, D. C., Kalumba, D., & Chebet, F. C. (2019). Laboratory investigation of recycled polyethylene terephthalate (PET) as soil reinforcement material. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE. https://doi.org/10.32075/17ECSMGE-2019-0768
  15. Karmacharya, R., & Acharya, I. P. (2017). Reinforcement of soil using recycled polyethylene terephthalate (PET) bottle strips. In Proceedings of the IOE Graduate Conference, Lalitpur, Nepal, 8914, 2350–8906.
  16. Kassa, R. B., Workie, T., Abdela, A., Fekade, M., Saleh, M., & Dejene, Y. (2020). Soil Stabilization Using Waste Plastic Materials. Open Journal of Civil Engineering, 10(01), 55–68. https://doi.org/10.4236/ojce.2020.101006
  17. Kumar, A. B. G., & Vageesh, H. P., (2017). Effect of Discarded Plastic Waste as Stabilizer on Engineering Properties of Effect of Discarded Plastic Waste as Stabilizer on Engineering Properties of Cohesive Soil. International Journal of Engineering Technology Science and Research, 4(12), 779–786.
  18. Laskar, A., & Pal, S. K. (2013). Effects of waste plastic fibers on compaction and consolidation behavior of reinforced soil. Electronic Journal of Geotechnical Engineering, 18 H, 1547–1558.
  19. Memon, A. N., Hindu, A. K., Memon, N. A., Amur, M. A., & Memon, U. H. (2019). Potential of Waste Plastic (PET) Bottle strips as reinforcement material for clayey soil. In Second International Conference on Sustainable Development in Civil Engineering, MUET, Pakistan, 359-361.
  20. Mohammed, M. A., Rahman A. R. E.., & Mohammed, I. Y. (2018). Evaluation of the Effect of Plastic Bottle (Pet) Waste on Stabilization of Clay. International Journal of Engineering Sciences & Research Technology, 7(8), 101–110.
  21. Mina, E., Fathonah, W., Kusuma, R. I., & Nurjanah, I. A. (2021). The utilization of lime and plastic sack fiber for the stabilization of clay and their effect on CBR value. Teknika: Jurnal Sains Dan Teknologi, 17(2), 289. https://doi.org/10.36055/tjst.v17i2.13025
  22. Singh, K., & Mittal, A. (2019). Soil Stabilisation Using Plastic Waste. Lecture Notes in Civil Engineering, 32, 91–96. https://doi.org/10.1007/978-981-13-7017-5_10