Slope Stability Analysis Using Finite Element Method on Tepus-Jerukwudel Road

##plugins.themes.academic_pro.article.main##

Dian Rusmanawati
I Gde Budi Indrawan
Hendy Setiawan

Abstract

Tepus-Jerukwudel Road construction is one of the South Coast Java Road sections located in Gunungkidul Regency, Special Region of Yogyakarta. One of the hills with the deepest excavation depth is at STA 14+350. The research location includes the Punung Formation which is dominated by reef limestones. The existing rock lithology is floatstone. The depth of the road excavation is more than 20 meters. The slope design is 3V:1H. This research aimed to analyze the slope stability of the Tepus-Jerukwudel Road and assess the safety factor of the slope design. We used the finite element method (FEM) in the Rocscience Phase2 v8.0 software by applying the Generalized Hoek-Brown method for the rock failure criteria. The loads considered in the slope stability analysis were live loads, dead loads, surcharge loads, and seismic loads. The results of the slope analysis without seismic loads resulted in the safety factor values for the left and right slopes of 4,49 and 3,32, respectively. For seismic loads conditions, the safety factor values for the left and right slopes are 3,74 and 2,66. The results indicated that slope design of the road is in a stable condition in accordance with the estimated static and seismic loads.

##plugins.themes.academic_pro.article.details##

How to Cite
Rusmanawati, D., Indrawan, I. G. B. ., & Setiawan, H. (2022). Slope Stability Analysis Using Finite Element Method on Tepus-Jerukwudel Road. Applied Research on Civil Engineering and Environment (ARCEE), 3(03), 150–162. https://doi.org/10.32722/arcee.v3i03.4801

References

  1. AASHTO. (2012). LRFD Seismic Bridge Design Published by the American Association of State Highway and Transportation Officials.
  2. Belghali, M., & Saada, Z. (2018). Seismic Stability Analysis of Rock Slopes by Yield Design Theory Using The Generalized Hoek-Brown Criterion. MATEC Web of Conferences, 149, 1–5. https://doi.org/10.1051/matecconf/201714902026
  3. Bishop, A. W. (1955). The Use of The Slip Circle in The Stability Analysis of Slopes. Geotechnique 5, 5(1), 7–17.
  4. Bushira, K. M., Gebregiorgis, Y. B., Verma, R. K., & Sheng, Z. (2018). Cut Soil Slope Stability Analysis Along National Highway at Wozeka–Gidole Road, Ethiopia. Modeling Earth Systems and Environment, 4(2), 591–600. https://doi.org/10.1007/s40808-018-0465-6
  5. Choanji, T. (2017). Slope Analysis Based On SRTM Digital Elevation Model Data: Study Case On Rokan IV Koto Area And Surrounding. Journal of Dynamics, 1.
  6. Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil Strength and Slope Stability, Second Edition. John Wiley & Sons.
  7. Dyson, A. P., & Tolooiyan, A. (2018). Optimisation of Strength Reduction Finite Element Method Codes for Slope Stability Analysis. Innovative Infrastructure Solutions, 3(1), 38. https://doi.org/10.1007/s41062-018-0148-1
  8. Hoek, E., & Brown, E. T. (2019). The Hoek–Brown Failure Criterion and GSI – 2018 Edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001
  9. Husein, S., & Srijono. (2007). Tinjauan Geomorfologi Pegunungan Selatan DIY/Jawa Tengah : Telaah Peran Faktor Endogenik dan Eksogenik dalam Proses Pembentukan Pegunungan. Https://Www.Researchgate.Net/Publication/282946295. https://doi.org/10.13140/RG.2.1.2784.0727
  10. Karrech, A., Dong, X., Elchalakani, M., Basarir, H., Shahin, M. A., & Regenauer-Lieb, K. (2022). Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion. International Journal of Mining Science and Technology, 32(2), 237–245. https://doi.org/https://doi.org/10.1016/j.ijmst.2021.10.005
  11. Komadja, G. C., Pradhan, S. P., Roul, A. R., Adebayo, B., Habinshuti, J. B., Glodji, L. A., & Onwualu, A. P. (2020). Assessment of stability of a Himalayan road cut slope with varying degrees of weathering: A finite-element-model-based approach. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05297
  12. Marinos, V. (2010). New Proposed GSI Classification Charts for Weak or Complex Rock Masses. Bulletin of the Geological Society of Greece, 43. https://doi.org/10.12681/bgsg.11301
  13. National Earthquake Study Center. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Ministry of Public Works and Housing.
  14. Nichols, G. (2009). Sedimentologi and Stratigraphy Second Edition. Willey-Blackwell.
  15. Pradhan, S. P., Vishal, V., Singh, T. N., & Singh, V. K. (2014). Optimisation of Dump Slope Geometry Vis-à-vis Flyash Utilisation Using Numerical Simulation. American Journal of Mining and Metallurgy, 2(1), 1–7. https://doi.org/10.12691/ajmm-2-1-1
  16. Raghuvanshi, T. K. (2019). Plane Failure in Rock Slopes – A Review on Stability Analysis Techniques. Journal of King Saud University - Science, 31(1), 101–109. https://doi.org/10.1016/j.jksus.2017.06.004
  17. Renani, H. R., & Martin, C. D. (2020). Factor of Safety of Strain-Softening Slopes. Journal of Rock Mechanics and Geotechnical Engineering, 12(3), 473–483. https://doi.org/10.1016/j.jrmge.2019.11.004
  18. Rocscience. (2007). User’s Guide: RocLab Rock Mass Strength Analysis Using The Hoek-Brown Failure Criterion. Rocscience Inc.
  19. Sun, C., Chai, J., Xu, Z., Qin, Y., & Chen, X. (2016). Stability Charts for Rock Mass Slopes Based on The Hoek-Brown Strength Reduction Technique. Engineering Geology, 214, 94–106. https://doi.org/10.1016/j.enggeo.2016.09.017
  20. Surono. (2009). Litostratigrafi Pegunungan Selatan Bagian Timur Daerah Istimewa Yogyakarta dan Jawa Tengah. Jurnal Geologi Dan Sumberdaya Mineral, 19(3), 209–221.
  21. Teymen, A., & Mengüç, E. C. (2020). Comparative Evaluation of Different Statistical Tools for The Prediction of Uniaxial Compressive Strength of Rocks. International Journal of Mining Science and Technology, 30(6), 785–797. https://doi.org/https://doi.org/10.1016/j.ijmst.2020.06.008
  22. Xu, J., & Yang, X. (2018). Seismic Stability Analysis and Charts of a 3D Rock Slope in Hoek–Brown Media. International Journal of Rock Mechanics and Mining Sciences, 112, 64–76. https://doi.org/https://doi.org/10.1016/j.ijrmms.2018.10.005
  23. You, G., Mandalawi, M. Al, Soliman, A., Dowling, K., & Dahlhaus, P. (2018). Finite Element Analysis of Rock Slope Stability Using Shear Strength Reduction Method. Sustainable Civil Infrastructures, 1, 227–235. https://doi.org/10.1007/978-3-319-61902-6_18
  24. Zaei, M. E., & Rao, K. S. (2017). Evaluating the Effect of Strong Earthquake on Slope Instability. Procedia Engineering, 173, 1771–1778. https://doi.org/https://doi.org/10.1016/j.proeng.2016.12.217
  25. Zuo, J., & Shen, J. (2020). The Hoek-Brown Constant mi. https://doi.org/10.1007/978-981-15-1769-3_5