Analisis Kelayakan Teknis Pembangkit Listrik Tenaga Sampah Pada TPA Pasuruhan

##plugins.themes.academic_pro.article.main##

Fahmi Miftachur Rohman
Henry Ananta
Eko Supraptono
Sri Sukamta

Abstract

Penggalian potensi EBT di berbagai daerah diperlukan agar paparan emisi GRK akibat sistem energi pembangkit listrik berbahan bakar fosil dengan tingkat polusi tinggi dapat diminimalkan. Tingginya timbunan limbah padat perkotaan TPA Pasuruhan menjadi sumber EBT yang potensial namun keberadaannya belum dimanfaatkan secara optimal. Oleh karena itu penelitian ini bertujuan untuk meninjau potensi sampah TPA Pasuruhan sebagai bahan baku pembangkitan listrik dan menilai kelayakan aspek teknis berupa peninjauan lokasi, kebutuhan lahan, dan potensi pembangkitan energi listrik. Metode penelitian yang digunakan berupa simulasi dengan software Aspen Hysys V11. Analisis potensi sampah TPA Pasuruhan dilakukan dengan menguji proksimat dari sampel sampah, analisis ultimate dan uji nilai kalor (LHV) sampah. Hasil penelitian didapatkan potensi pembangkitan listrik ke jaringan listrik sebesar 544,54 kW dari suplai sampah sebanyak 3.347,63 kg/jam dengan nilai hasil uji proksimat, ultimate, dan nilai kalor LHV sampah memenuhi kriteria standar dan TPA Pasuruhan layak dari aspek teknis untuk pembangunan pembangkit listrik.

##plugins.themes.academic_pro.article.details##

How to Cite
Fahmi Miftachur Rohman, Henry Ananta, Eko Supraptono, & Sri Sukamta. (2023). Analisis Kelayakan Teknis Pembangkit Listrik Tenaga Sampah Pada TPA Pasuruhan. Electrices, 5(2), 78–87. https://doi.org/10.32722/ees.v5i2.5807

References

  1. W. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Environmental Research Letters, vol. 16, no. 7. 2021, doi: 10.1088/1748-9326/abee4e.
  2. M. Jakob, C. Flachsland, J. Christoph Steckel, and J. Urpelainen, “Actors, objectives, context: A framework of the political economy of energy and climate policy applied to India, Indonesia, and Vietnam,” Energy Res. Soc. Sci., vol. 70, 2020, doi: 10.1016/j.erss.2020.101775.
  3. D. Cerinski et al., “Modelling the biomass updraft gasification process using the combination of a pyrolysis kinetic model and a thermodynamic equilibrium model,” Energy Reports, vol. 7, 2021, doi: 10.1016/j.egyr.2021.05.079.
  4. S. Farzad, M. A. Mandegari, and J. F. Görgens, “A critical review on biomass gasification, co-gasification, and their environmental assessments,” Biofuel Research Journal, vol. 3, no. 4. 2016, doi: 10.18331/BRJ2016.3.4.3.
  5. S. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, “Recent advances in the development of biomass gasification technology: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 72. 2017, doi: 10.1016/j.rser.2017.01.038.
  6. S. Evangelisti, R. Clift, C. Tagliaferri, and P. Lettieri, “A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe,” Waste Manag., vol. 64, 2017, doi: 10.1016/j.wasman.2017.03.028.
  7. A. Sharma, A. K. Gupta, and R. Ganguly, “Impact of open dumping of municipal solid waste on soil properties in mountainous region,” J. Rock Mech. Geotech. Eng., vol. 10, no. 4, pp. 725–739, 2018, doi: 10.1016/j.jrmge.2017.12.009.
  8. M. A. Alao, O. M. Popoola, and T. R. Ayodele, “Waste-to-energy nexus: An overview of technologies and implementation for sustainable development,” Clean. Energy Syst., p. 100034, 2022.
  9. J. Marshall, D. Hoornweg, W. B. Eremed, and G. Piamonti, “World Energy Resources Waste to Energy,” World Energy Counc, pp. 5–60, 2016.
  10. S. Afrane, J. D. Ampah, C. Jin, H. Liu, and E. M. Aboagye, “Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach,” J. Clean. Prod., vol. 318, 2021, doi: 10.1016/j.jclepro.2021.128515.
  11. A. P. Nuryadi, T. B. Pratomo, and A. A. Raksodewanto, “Analysis of the feasibility of small-biomass power generation from the palm oil mill-study case: Palm oil mill in Riau-Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 336, no. 1, doi: 10.1088/1755-1315/336/1/012018.
  12. M. F. M. Abushammala, W. A. Qazi, S. Frrag, M. Y. D. Alazaiza, and M. K. Younes, “Site selection of municipal solid waste incineration plant using GIS and multicriteria decision analysis,” J. Air Waste Manage. Assoc., vol. 72, no. 9, pp. 1027–1039, 2022.
  13. M. M. Azis, J. Kristanto, and C. W. Purnomo, “A techno‐economic evaluation of municipal solid waste (Msw) conversion to energy in indonesia,” Sustain., vol. 13, no. 13, 2021, doi: 10.3390/su13137232.
  14. S. N. Qodriyatun, “Pembangkit Listrik Tenaga Sampah: Antara Permasalahan Lingkungan dan Percepatan Pembangunan Energi Terbarukan,” Aspir. J. Masal. Sos., vol. 12, no. 1, pp. 63–84, 2021, doi: 10.46807/aspirasi.v12i1.2093.
  15. S. Wahyono, F. L. Sahwan, and F. Suryanto, “Characterization of municipal solid waste for waste to energy feedstock in Jakarta,” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 1034, no. 1, doi: 10.1088/1755-1315/1034/1/012034.
  16. I. A. Zakarya, N. S. A. Fazhil, T. N. T. Izhar, S. K. Zaaba, and M. N. F. Jamaluddin, “Municipal solid waste characterization and quantification as a measure towards effective solid waste management in UniMAP,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 616, no. 1, doi: 10.1088/1755-1315/616/1/012047.
  17. R. Strydom, “Enhanced waste tyre pyrolysis for the production of hydrocarbons and petrochemicals.” Cape Peninsula University of Technology, 2017.
  18. D. A. da Silva, E. Eloy, B. O. Caron, and P. F. Trugilho, “Elemental Chemical Composition of Forest Biomass at Different Ages for Energy Purposes,” Floresta e Ambient., vol. 26, no. 4, 2019, doi: 10.1590/2179-8087.020116.
  19. J. Amulen, H. Kasedde, J. Serugunda, and J. D. Lwanyaga, “The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration,” Energy Convers. Manag. X, vol. 14, 2022, doi: 10.1016/j.ecmx.2022.100204.
  20. S. Kerdsuwan and K. Laohalidanond, “Simulation of Green and Clean Electrical Power Generation of a 500 Ton per Day Waste Incineration Plant with High Moisture Content and Low Heating Value,” Appl. Mech. Mater., vol. 799–800, 2015, doi: 10.4028/www.scientific.net/amm.799-800.1244.
  21. R. J. Giraud, P. H. Taylor, and C. pao Huang, “Combustion operating conditions for municipal Waste-to-Energy facilities in the U.S.,” Waste Manag., vol. 132, 2021, doi: 10.1016/j.wasman.2021.07.015.
  22. S. Sanaye and A. Ghaffari, “Modeling, multi-objective optimization and comparison of fire and water tube heat recovery steam generators for gas engine cogeneration plants,” J. Therm. Anal. Calorim., vol. 144, no. 5, 2021, doi: 10.1007/s10973-020-10522-3.
  23. J. Lee, K. M. Kim, S. Im, S. H. Shin, W. S. Chang, and M. S. Oh, “A study on the variation of the performance and the cost of power generation in a combined heat and power plant with the change of the user facility’s return temperature,” J. Mech. Sci. Technol., vol. 34, no. 2, 2020, doi: 10.1007/s12206-020-0140-5.
  24. R. A. Ibikunle, I. F. Titiladunayo, B. O. Akinnuli, S. O. Dahunsi, and T. M. A. Olayanju, “Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria,” Energy Reports, vol. 5, 2019, doi: 10.1016/j.egyr.2019.01.005.
  25. W. Lu, L. Yuan, and F. Xue, “Investigating the bulk density of construction waste: A big data-driven approach,” Resour. Conserv. Recycl., vol. 169, 2021, doi: 10.1016/j.resconrec.2021.105480.
  26. D. W. Manurung and E. B. Santoso, “Penentuan Lokasi Tempat Pemrosesan Akhir (TPA) Sampah yang Ramah Lingkungan di Kabupaten Bekasi,” J. Tek. ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373539.v8i2.48801.
  27. R. Y. Lesmana, “Estimasi Laju Timbulan Sampah dan Kebutuhan Landfill Periode 2018-2027 (Studi Kasus Kec. Mentawa Baru Ketapang, Kab. Kotawaringin Timur, Kalimantan Tengah),” Media Ilm. Tek. Lingkung., vol. 2, no. 2, 2017, doi: 10.33084/mitl.v2i2.124.
  28. E. Damanhuri and T. Padmi, Pengelolaan Sampah Terpadu, Pertama. Bandung: Penerbit ITB, 2016.
  29. S. Yalcinkaya and O. S. Kirtiloglu, “Application of a geographic information system-based fuzzy analytic hierarchy process model to locate potential municipal solid waste incineration plant sites: A case study of Izmir Metropolitan Municipality,” Waste Manag. Res., vol. 39, no. 1, 2021, doi: 10.1177/0734242X20939636.
  30. I. Boumanchar et al., “Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques,” Waste Manag. Res., vol. 37, no. 6, 2019, doi: 10.1177/0734242X18816797.
  31. N. Dadario, L. R. A. Gabriel Filho, C. P. Cremasco, F. A. dos Santos, M. C. Rizk, and M. Mollo Neto, “Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil,” Sustain., vol. 15, no. 6, pp. 1–20, 2023, doi: 10.3390/su15065397.
  32. BPS Kabupaten Magelang, Kabupaten Magelang Dalam Angka Magelang Regency in Figures 2023. Kabupaten Magelang: BPS Kabupaten Magelang, 2023.
  33. E. K. Paleologos, P. Caratelli, and M. El Amrousi, “Waste-to-energy: An opportunity for a new industrial typology in Abu Dhabi,” Renewable and Sustainable Energy Reviews, vol. 55. 2016, doi: 10.1016/j.rser.2015.07.098.