Jemssy Ronald Rohi, Priyo Tri Iswanto, Tjipto Sujitno, Erich Umbu Kondi


AISI 316L is widely used for implantation in orthopedic surgery due to its good corrosion resistance, mechanical properties and low cost. However, AISI 316L is not well suited for biocompatibility with the body, so implant material with AISI 316L can’t be used for a long time. One way to improve the corrosion resistance and mechanical properties of AISI 316L is to perform a surface treatment such as sputtering. This study discusses the effect of deposition sputtering TiN of 60, 90, 120 and 150 minutes on roughness and surface hardness at a ratio of argon gas and nitrogen to 80% Ar:20% N2. The results of the surface roughness value of the TiN sputtering layer deposited to AISI 316L for 60, 90, 120, and 150 minutes were 0.02 μm, 0.04 μm, 0.06 μm, and 0.04 μm respectively. This shows that the coating time of TiN in AISI 316L has no significant influence on value of surface roughness. Surface hardness results at 60, 90, 120, and 150 minutes were obtained with 268 HVN, 275 HVN, 278 HVN and 282 HVN. Increased hardness value, as the TiN thin layer has a higher hardness value compared to AISI 316L. The longer the deposition time, the more layers are formed and the layer becomes thicker. With the thickness of the layer, the density at the grain boundary increases. Because the higher density leads to grain growth, in which form micropores.


Sputtering TiN; Roughness; Hardness; AISI 316L


Cahyanto, Arief. 2009. Makalah, Universitas Padjajaran, Bandung.

Grainger, S., Blunt, J., 1999. Engineering Coatings—Design and Application, 2nd ed., Ed., Woodhead Publishing Ltd.

Hetal, S,. Vipin, C,. Jayagantha, Davinder, K. 2010. Microstructural Characterizations and Hardness Evaluatinof DC Reactive Sputtered CrN Thin Films on stinless Steel Substrate. Indisn acamedyof Sciences 103-110.

Yeung, K.W.K. R.W.Y. Poon, P.K. Chu, C.Y. Chung, X.Y. Liu, W.W. Lu, D. Chan, S.C.W. Chan, K.D.K. Luk, K.M.C. Cheung. 2007. Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.a, 403-414

Wen, M. Q. N. W. X. Meng, W. T. Yu, S. X. Zheng, Mao, M. J. Hua. 2010. Growth Stress and Hardness of Reactively Sputtered Tungsten Nitride Thin Films, Surface and Coating Technology 205. pp.1953-1961,

Ohring, M. 1992. The Materials Science of Thin Films. Academic Press, New Jersey.

Salahudin. Xander, 2014. Analisis Sifat Fisik Lapisan Tipis Titanium Nitrida Pada Baja AISI 410 Yang Dilapis Dengan Metode Sputtering. Prosiding SNST ke-5 Tahun 2014, Fakultas Teknik Universitas Wahid Hasyim Semarang. ISBN 978-602-99334-3-7

Shah, H. N., Chawla, V., Jayaganthan, R., and Kaur, D., 2010. Microstructural Characterization and Hardness Evaltio of D.c. Reactive Magnetron Sputtered CrN Thin Film of Stainless steel Substrate, Bulletin Materials Science, Vol. 33, No. 2, pp. 103-110.

Sridhar, T. M., Mudali, Kamachi, U., Subbaiyan, M. 2003. Corrosion Science, 45 237-252.

Stueber , M., Holleck, H., Leiste, H., Seemann, K., Ulrich, S., and Ziebert, C. 2009. Concept for the Design of Advance Nanoscale PVD Multiplayer Protective Thin Films, Journal of Alloysand Compounds483, pp. 321-333.

Wang, L., Su, J. F., Nie, X., 2010. Corrosion and Tribological properties and impact Fatigue Behaviors of TiN and DLC Coated Stainless Steel in simulated Body Fluid Environment. Surface & Coatings Technology 205, pp.1599-1605.

Wirjoadi, Siswanto, B., Sudjatmoko. 2009. Analisis Sifat Mikro Lapisan Tipis TiN Pada Substrat AL Hasil Plasma Sputtering.Buku I Prosiding PPI – PDIPTN Pusat Teknologi Akselerator dan Proses Bahan – BATAN Yogyakarta, 14 Juli 2009.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License